122 research outputs found

    Light-sheet microscopy: a tutorial

    Get PDF
    This paper is intended to give a comprehensive review of light-sheet (LS) microscopy from an optics perspective. As such, emphasis is placed on the advantages that LS microscope configurations present, given the degree of freedom gained by uncoupling the excitation and detection arms. The new imaging properties are first highlighted in terms of optical parameters and how these have enabled several biomedical applications. Then, the basics are presented for understanding how a LS microscope works. This is followed by a presentation of a tutorial for LS microscope designs, each working at different resolutions and for different applications. Then, based on a numerical Fourier analysis and given the multiple possibilities for generating the LS in the microscope (using Gaussian, Bessel, and Airy beams in the linear and nonlinear regimes), a systematic comparison of their optical performance is presented. Finally, based on advances in optics and photonics, the novel optical implementations possible in a LS microscope are highlighted.Peer ReviewedPostprint (published version

    Design strategies for optimizing holographic optical tweezers setups

    Get PDF
    We provide a detailed account of the construction of a system of holographic optical tweezers. While much information is available on the design, alignment and calibration of other optical trapping configurations, those based on holography are relatively poorly described. Inclusion of a spatial light modulator in the setup gives rise to particular design trade-offs and constraints, and the system benefits from specific optimization strategies, which we discuss.Comment: 16 pages, 15 figure

    HoloTrap: Interactive hologram design for multiple dynamic optical trapping

    Get PDF
    This work presents an application that generates real-time holograms to be displayed on a holographic optical tweezers setup; a technique that allows the manipulation of particles in the range from micrometres to nanometres. The software is written in Java, and uses random binary masks to generate the holograms. It allows customization of several parameters that are dependent on the experimental setup, such as the specific characteristics of the device displaying the hologram, or the presence of aberrations. We evaluate the software's performance and conclude that real-time interaction is achieved. We give our experimental results from manipulating 5 micron-diametre microspheres using the program.Comment: 17 pages, 6 figure

    >

    No full text

    Light-sheet microscopy: a tutorial

    No full text
    This paper is intended to give a comprehensive review of light-sheet (LS) microscopy from an optics perspective. As such, emphasis is placed on the advantages that LS microscope configurations present, given the degree of freedom gained by uncoupling the excitation and detection arms. The new imaging properties are first highlighted in terms of optical parameters and how these have enabled several biomedical applications. Then, the basics are presented for understanding how a LS microscope works. This is followed by a presentation of a tutorial for LS microscope designs, each working at different resolutions and for different applications. Then, based on a numerical Fourier analysis and given the multiple possibilities for generating the LS in the microscope (using Gaussian, Bessel, and Airy beams in the linear and nonlinear regimes), a systematic comparison of their optical performance is presented. Finally, based on advances in optics and photonics, the novel optical implementations possible in a LS microscope are highlighted.Peer Reviewe

    Light-sheet microscopy: a tutorial

    No full text
    This paper is intended to give a comprehensive review of light-sheet (LS) microscopy from an optics perspective. As such, emphasis is placed on the advantages that LS microscope configurations present, given the degree of freedom gained by uncoupling the excitation and detection arms. The new imaging properties are first highlighted in terms of optical parameters and how these have enabled several biomedical applications. Then, the basics are presented for understanding how a LS microscope works. This is followed by a presentation of a tutorial for LS microscope designs, each working at different resolutions and for different applications. Then, based on a numerical Fourier analysis and given the multiple possibilities for generating the LS in the microscope (using Gaussian, Bessel, and Airy beams in the linear and nonlinear regimes), a systematic comparison of their optical performance is presented. Finally, based on advances in optics and photonics, the novel optical implementations possible in a LS microscope are highlighted.Peer Reviewe

    Applet d'òptica de Fourier

    No full text
    Pertany a JOptics, un conjunt de recursos docents dirigits a l'aprenentatge de l'òptica física en l'àmbit universitari en el marc dels ensenyaments de Física o la titulació en Òptica i Optometria. http://www.ub.edu/javaoptics/index-ca.htmlPodeu consultar la versió en castellà a: http://hdl.handle.net/2445/14388 ; i en anglès a: http://hdl.handle.net/2445/14623En aquest programa es poden realitzar diferents operacions de processament d'imatges en el camp de l'òptica de Fourier. Es poden calcular i visualitzar la transformada de Fourier d'un objecte i la convolució entre dues imatges. També es poden simular el correlador de Vander Lugt (filtre adaptat, de fase i invers) i el correlador de transformades conjuntes (espectre de potència lineal i binari

    Applet de óptica de Fourier

    No full text
    Pertenece a JOptics, un conjunto de recursos docentes dirigidos al aprendizaje de la Óptica Física a nivel universitario en el marco de la licenciatura de Física o la titulación en Óptica y Optometría. http://www.ub.edu/javaoptics/index-es.htmlPodeu consultar la versió en català a: http://hdl.handle.net/2445/14328 ; i en anglès a: http://hdl.handle.net/2445/14623En este programa se pueden realizar diferentes operaciones de procesado de imágenes en el campo de la óptica de Fourier. Se pueden calcular y visualizar la transformada de Fourier de un objeto y la convolución entre dos imágenes. También se puede simular el correlador de Vander Lugt (filtro adaptado, de fase e inverso) y el correlador de transformadas conjuntas (espectro de potencia lineal y binario)
    corecore